Identification and Interpretation of Belief Structure in Dempster-Shafer Theory
نویسنده
چکیده
Mathematical Theory of Evidence called also Dempster-Shafer Theory (DST) is known as a foundation for reasoning when knowledge is expressed at various levels of detail. Though much research effort has been committed to this theory since its foundation, many questions remain open. One of the most important open questions seems to be the relationship between frequencies and the Mathematical Theory of Evidence. The theory is blamed to leave frequencies outside (or aside of) its framework. The seriousness of this accusation is obvious: (1) no experiment may be run to compare the performance of DST-based models of real world processes against real world data, (2) data may not serve as foundation for construction of an appropriate belief model. In this paper we develop a frequentist interpretation of the DST bringing to fall the above argument against DST. An immediate consequence of it is the possibility to develop algorithms acquiring automatically DST belief models from data. We propose three such algorithms for various classes of belief model structures: for tree structured belief networks, for poly-tree belief networks and for general type belief networks. 2 MIECZYS lAW A. K lOPOTEK
منابع مشابه
A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملA NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY
In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...
متن کاملThe Dempster-Shafer Theory Algorithm and its Application to Insect Diseases Detection
This paper presents Dempster-Shafer Theory for insect diseases detection. Sustainable elimination of insect diseases as a public-health problem is feasible and requires continuous efforts and innovative approaches. In this research, we used Dempster-Shafer theory for detecting insect diseases and displaying the result of detection process. Insect diseases which include babesiosis, dengue fever,...
متن کاملA Logical Interpretation of Dempster-Shafer Theory, with Application to Visual Recognition
We formulate Dempster Shafer Belief functions in terms of Propositional Logic, using the im plicit notion of provability underlying Demp ster Shafer Theory. The assignment of weights to the propositional literals enables the Belief functions to be explicitly computed using Net work Reliability techniques. Also, the updat ing of Belief functions using Dempster's Rule of Combination correspon...
متن کاملA Study on Properties of Dempster-Shafer Theory to Probability Theory transformations
In this paper, five conditions that have been proposed by Cobb and Shenoy are studied for nine different mappings from the Dempster-Shafer theory to the probability theory. After comparing these mappings, one of the considerable results indicates that none of the mappings satisfies the condition of invariance with respect to the marginalization process. In more details, the main reason for this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.03881 شماره
صفحات -
تاریخ انتشار 2017